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Abstract This paper focuses on the study of a linear eigenvalue problem with indef-
inite weight and Robin type boundary conditions. We investigate the minimization of
the positive principal eigenvalue under the constraint that the absolute value of the
weight is bounded and the total weight is a fixed negative constant. Biologically, this
minimization problem is motivated by the question of determining the optimal spatial
arrangement of favorable and unfavorable regions for a species to survive. For rect-
angular domains with Neumann boundary condition, it is known that there exists a
threshold value such that if the total weight is below this threshold value then the op-
timal favorable region is like a section of a disk at one of the four corners; otherwise,
the optimal favorable region is a strip attached to the shorter side of the rectangle.
Here, we investigate the same problem with mixed Robin-Neumann type boundary
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conditions and study how this boundary condition affects the optimal spatial arrange-
ment.

Keywords Asymptotic analysis · Principal eigenvalue · Elliptic boundary value
problem with indefinite weight · Robin conditions · Shape optimization

1 Introduction: Indefinite Eigenvalue Problem

The following linear eigenvalue problem with indefinite weight is of particular inter-
est in the study of population dynamics [13]:{

�ϕ + λmϕ = 0 in �,

∂nϕ + βϕ = 0 on ∂�,
(1)

where � is a bounded domain in R
N with a smooth boundary ∂�, n is the outward

unit normal vector on ∂�, and the weight m is a bounded measurable function which
changes sign in � and satisfies

−1 ≤ m(x) ≤ κ ∀x in �, (2)

where κ > 0 is a given constant. It is said that λ is a principal eigenvalue of (1) if
the corresponding eigenfunction ϕ ∈ H 1(�) is positive. The existence of principal
eigenvalues of (1) was discussed in [2, 5] for different values of β . It is well know
that the case when 0 < β < ∞ is similar to the Dirichlet case. Suppose that

�+ = {x ∈ � : m(x) > 0}
has positive Lebesgue measure, then problem (1) has a unique positive principal
eigenvalue and the corresponding eigenfunction ϕ satisfies∫

�

m(x)ϕ(x)2 dx > 0.

In the critical case β = 0, which corresponds to Neumann boundary conditions, 0 is
a principal eigenvalue and there is a positive principal eigenvalue if and only if∫

�

m(x)dx < 0 and �+ has positive Lebesgue measure. (3)

For β < 0, it was shown in [2] that, depending on β , (1) has two, one or zero prin-
cipal eigenvalues. In the case of two principal eigenvalues, the way of distinguishing
between them is by considering the sign of

∫
�

m(x)ϕ(x)2 dx.
One of the motivations for studying the dependence of the principal eigenvalue

λ = λ(m) on the weight m comes from the diffusive logistic equation introduced
in [23]: ⎧⎪⎨

⎪⎩
ut = �u + ωu[m(x) − u] in � × R

+,

∂nu + βu = 0 on ∂� × R
+,

u(x,0) ≥ 0, u(x,0) �≡ 0 in �,

(4)
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where u(x, t) represents the density of a species at location x and time t , and ω is a
positive parameter. On one hand, the case β = 0 corresponds to Neumann or no-flux
boundary condition and means that the boundary acts as a barrier, i.e. any individual
reaching the boundary returns to the interior. On the other hand, the case β = +∞
corresponds to Dirichlet conditions and may be interpreted as a deadly boundary,
i.e. the exterior environment is completely hostile and any individual reaching the
boundary dies. For values 0 < β < ∞, we are in the situation where the domain � is
surrounded by a partially inhospitable region, where inhospitableness grows with β .
The weight m represents the intrinsic growth rate of species: it is positive in the
favorable part of habitat (�+) and negative in the unfavorable one (�− = {x ∈ � :
m(x) < 0}). The integral of m over � measures the total resources in a spatially
heterogeneous environment.

The logistic equation (4) plays an important role in studying the effects of dis-
persal and spatial heterogeneity in population dynamics; see, e.g. [6, 7, 9] and the
references therein. It is known that if ω ≤ λ(m), then u(x, t) → 0 uniformly in �

as t → ∞ for all non-negative and non-trivial initial data, i.e., the species goes to
extinction; if ω > λ(m), then u(x, t) → u∗(x) uniformly in � as t → ∞, where u∗ is
the unique positive steady solution of (4) in W 2,q (�) for every q > 1, i.e., the species
survives. We are particularly concerned with the effects of spatial variation in the en-
vironment of species extinctions. In this connection, let m0 < 1 be a positive constant
and assume that

(A1) m satisfies (2), �+ has positive measure, and
∫
�

m ≤ −m0|�|.
Since the species can be maintained if and only if ω > λ(m), we see that the

smaller λ(m) is, the more likely the species can survive. With this in mind, the fol-
lowing question was raised and addressed by Cantrell and Cosner in [6, 7]: Among
all functions m that satisfy (A1), which m will yield the smallest principal eigenvalue
λ(m)? From the biological point of view, finding such a minimizing function m is
equivalent to determining the optimal spatial arrangement of the favorable and unfa-
vorable parts of the habitat for species to survive. This issue is important for public
policy decisions on conservation of species with limited resources.

Given m0 < 1 and κ > 0, we define the set of admissible functions

M = {
m ∈ L∞(�) : m satisfies (A1)

}
, (5)

and the problem

infλ(m) subject to m ∈ M. (6)

The following result was established in [20] for Neumann conditions (i.e. β = 0)
and may be straightforwardly extended to Robin conditions, therefore we do not re-
produce here the proof but rather refer to [20, Theorem 1.1] for details. This theorem
states that the optimal solution m only takes the two barrier values −1 and κ . There-
fore, the analysis may be performed in the set of piecewise constant functions m

taking the values −1 and κ and verifying the volume constraint instead of M. In
this way the problem can be seen as a free boundary problem, where one seeks the
interface between the regions where m is equal to −1 or κ .
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Theorem 1 The infimum λinf := infm∈M λ(m) is attained at some m ∈ M. Moreover,
if λ(m) = λinf, then m can be represented as m = κχE − χ�\E almost everywhere
(a.e.) in � for some measurable set E ⊂ �. In addition, the volume constraint in (A1)
is active, i.e.

∫
�

m = −m0|�|.

The fact that the volume constraint in (A1) is active is due to a comparison princi-
ple (see [20, Lemma 2.3]) which establishes the property:

m1 > m2 ⇒ λ(m1) < λ(m2).

This comparison principle is obtained straightforwardly by comparing the Rayleigh
quotient (75) for m1 and m2. In view of this principle, it is clear that the volume
constraint must be active at the optimum, otherwise the eigenvalue could still be
further decreased.

In this paper we assume β ≥ 0 and use the notation mE := κχE −χ�\E . In Sect. 2,
in one dimension problem (6) with Robin boundary conditions is solved in the case
where E has exactly one connected component. We show that there is a threshold
value β∗ such that the optimal set behaves like in the case of Dirichlet boundary con-
ditions for β > β∗ and like in the case of Neumann boundary conditions for β < β∗.
From Sect. 3 on, we consider multi-dimensional domains. In particular, cylindrical
domain in R

N with mixed Robin-Neumann conditions are analysed. The asymptotic
analysis for a small perturbation of mE with E being a strip is performed and the
second-order derivative λ2 of λ is derived. The knowledge of the sign of λ2 allows to
determine whether mE is a local optimum for problem (6). In Sect. 4, the sign of λ2
is analysed using the results of Sect. 2 in one dimension. Conditions proving the strip
E to be optimal are analysed in Sects. 5 and 6. Finally, in Sect. 7 a numerical method
for minimizing the eigenvalue is given and applied in the one- and two-dimensional
cases, respectively.

2 Principal Eigenvalue with Robin Conditions in One Dimension

In this section we study the one-dimensional case, i.e. N = 1. Without loss of gener-
ality, we take � = (0,1). According to Theorem 1, we consider the minimization of
λ(m) with m = κχE − χ�\E , E ∈ Sc, where

Sc := {E ⊂ �, E measurable : |E| = c}, (7)

and c is such that (A1) is satisfied and active, i.e.
∫
�

m = −m0|�|. The case of Robin
boundary conditions contains the Dirichlet case, for β = ∞, and the Neumann case
for β = 0. The Neumann case in one dimension was fully investigated in [20], where
the authors give the explicit global optimum of the principal eigenvalue. The method
consists in looking for minimizers into the subsets Sk

c of Sc given by

Sk
c := {E ∈ Sc : E consists of k disjoint open intervals} for k ∈ N.

Unfortunately, this method relies on the extensive use of the Neumann conditions and
cannot be transferred to Robin boundary conditions. In the Robin case, we are only
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able to obtain optimal sets if we minimize λ(m) in the smaller set S1
c instead of Sc.

Nevertheless, it is conjectured, in view of the Neumann [20] and Dirichlet [11] cases,
as well as the numerical results from Sect. 7, that the optimal sets are indeed in S1

c

when minimizing in Sc. Therefore, in what follows, we consider sets E ∈ S1
c .

In this section, based on a particular ansatz for the solution of (8)–(9) below, we
obtain (17) determining the eigenvalue. It cannot be solved explicitly, however study-
ing this equation allows us to determine the monotonicity of λ with respect to the
position of E and thus to conclude on the optimality of E in S1

c . These results are
given in Theorem 2. In [8, Sect. 2], the one-dimensional version of problem (1) is
studied in the special case κ = 1. Here, we study the general case κ > 0. Then the
eigenvalue problem (1) becomes

ϕ′′ + λmϕ = 0 in (0,1), (8)

ϕ′(0) − βϕ(0) = ϕ′(1) + βϕ(1) = 0. (9)

Let 0 < a < b < 1 and c = b − a > 0. The interval E is defined as E := (a, b) and m

as m := κχE − χ�\E , E ∈ S1
c . We may rewrite the eigenvalue problem (1) as

ϕ′′ − λϕ = 0 in (0, a), (10)

ϕ′′ + λκϕ = 0 in (a, b), (11)

ϕ′′ − λϕ = 0 in (b,1), (12)

ϕ′(0) − βϕ(0) = ϕ′(1) + βϕ(1) = 0, (13)

ϕ′(a)+ − ϕ′(a)− = ϕ′(b)+ − ϕ′(b)− = 0, (14)

ϕ(a)+ − ϕ(a)− = ϕ(b)+ − ϕ(b)− = 0. (15)

According to [2, 5] we have λ > 0, ϕ > 0 for β ≥ 0 and we may consider

ϕ(x) =

⎧⎪⎨
⎪⎩

C1 cosh
√

λ(x − a) + C2 sinh
√

λ(x − a) in (0, a),

C3 cos
√

λκ(x − a) + C4 sin
√

λκ(x − a) in (a, b),

C5 cosh
√

λ(x − b) + C6 sinh
√

λ(x − b) in (b,1),

(16)

with constants Ci = Ci(E), i = 1, . . . ,6. The boundary and transmission conditions
(13)–(15) may be written as a system MC = 0, where M is a 6 × 6 matrix with
coefficients mij and C is a column vector whose elements are Ci , i = 1, . . . ,6. The
coefficients of M are all zeros except for

m11 =
√

λ sinh(
√

λa) + β cosh(
√

λa)√
λ cosh(

√
λa) + β sinh(

√
λa)

, m12 = −1,

m25 =
√

λ sinh(
√

λ(1 − b)) + β cosh(
√

λ(1 − b))√
λ cosh(

√
λ(1 − b)) + β sinh(

√
λ(1 − b))

, m26 = 1,

m31 = 1, m33 = −1,

m42 = −1, m44 = √
κ,
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m53 = cos
√

λκc, m54 = sin
√

λκc, m55 = −1,

m63 = −√
κ sin

√
λκc, m64 = √

κ cos
√

λκc, m66 = −1.

Obviously, MC = 0 has a non-trivial solution only if detM = 0. If this is the case,
then one may give an expression of the eigenfunction ϕ proportional to C1 �= 0. The
coefficient C1 is then uniquely defined by a normalization condition on ϕ, for instance∫
�

ϕ = 1. Actually, solving the equation detM = 0 yields the eigenvalue λ. With
some elementary but laborious calculations, this equation becomes

f (a,β, κ,λ) = 0 (17)

with f given by

f (a,β, κ,λ) = cosh(
√

λ(1 − a − c))

× [
cosh(

√
λa)(ls(−λ

√
κ + β2/

√
κ) + lc(2β

√
λ))

+ sinh(
√

λa)(ls(−β
√

λκ + β
√

λ/
√

κ) + lc(λ + β2))
]

+ sinh(
√

λ(1 − a − c))

× [
cosh(

√
λa)(ls(−β

√
λκ + β

√
λ/

√
κ) + lc(λ + β2))

+ sinh(
√

λa)(ls(−β2√κ + λ/
√

κ) + lc(2β
√

λ))
]
,

where we have used the notations lc := cos(
√

λκc) and ls := sin(
√

λκc). Theorem 1
and (A1) imply that c depends on κ in the following way:

c = 1 − m0

1 + κ
<

1

1 + κ
.

When β = 0, then (17) becomes the characteristic equation for the Neumann problem

tanh
√

λ(1 − c) =
√

κ tan(
√

λκc) − tanh(
√

λa)

1 + tanh(
√

λa) tan(
√

λκc)/
√

κ
, (18)

which, for a = 0, leads to the formula that was found in [20], i.e.

√
κ tan

√
λκc = tanh

√
λ(1 − c). (19)

When β → ∞, (17) also provides a characteristic equation for the Dirichlet problem:

tanh
√

λ(1 − c) = − tan(
√

λκc)/
√

κ + tanh(
√

λa)

1 − √
κ tanh(

√
λa) tan(

√
λκc)

, (20)

which, for a = 0, leads to the relation

tan
√

λκc = −√
κ tanh

√
λ(1 − c). (21)
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Remark 1 Equation (19) has a unique solution λ in ]0, (π/2c)2/κ[, while (21) has a
unique solution in ](π/2c)2/κ, (π/c)2/κ[. According to [1], λ is an increasing func-
tion of β . This indicates that 0 < λ < (π/c)2/κ for any β .

Notice that f can also be expressed in the following way:

f (a,β, κ,λ) = g(β, κ,λ) + h(a,β, κ,λ), (22)

with

g(β, κ,λ) = 2β
√

λlc cosh(
√

λ(1 − c)) + β
√

λ(1/
√

κ − √
κ)ls sinh(

√
λ(1 − c))

+ (λ + β2)lc sinh(
√

λ(1 − c)) + λ(1/
√

κ − √
κ)ls cosh(

√
λ(1 − c)),

h(a,β, κ,λ) = cosh(
√

λ(1 − a − c)) cosh(
√

λa)ls(β
2 − λ)/

√
κ

+ sinh(
√

λ(1 − a − c)) sinh(
√

λa)ls(λ − β2)
√

κ.

After simplification, the partial derivative of f with respect to a is given by

∂af (a,β, κ,λ) = (β2 − λ)(
√

λls(
√

κ + 1/
√

κ))(sinh
√

λ(a − (1 − a − c))). (23)

According to Remark 1 we have 0 < λ < (π/c)2/κ , thus in (23) the sign of
∂af (a,β, κ,λ) depends only on the sign of β2 −λ and a − (1−c)/2. It is known [16]
that for β > 0, (8)–(9) has a unique positive principal eigenvalue, which is also the
first positive eigenvalue of (8)–(9). Therefore, for each 0 ≤ a ≤ 1 − c, β ≥ 0, κ > 0
there exists λ(a,β, κ) such that (17) is satisfied with the associated eigenfunction ϕ

fulfilling ϕ > 0. Considering λ = λ(a,β, κ) and taking the derivative with respect to
a we obtain

∂λf (a,β, κ,λ(a,β, κ))∂aλ(a,β, κ) = −∂af (a,β, κ,λ(a,β, κ)). (24)

Thus, in order to determine the sign of ∂aλ(a,β, κ) we need to establish the sign
of ∂λf (a,β, κ,λ(a,β, κ)). However, the derivative with respect to λ of f is very
involved as can be seen from the definition of f . Instead, to determine ∂λf we may
write the derivative with respect to β of f and we get in a similar way:

∂λf (a,β, κ,λ(a,β, κ))∂βλ(a,β, κ) = −∂βf (a,β, κ,λ(a,β, κ)). (25)

It has been shown in [1] that ∂βλ(a,β, κ) > 0, thus ∂λf (a,β, κ,λ(a,β, κ)) and
∂βf (a,β, κ,λ(a,β, κ)) have opposite signs. Now we compute the derivative of f

with respect to β . We obtain, using (22)

∂βf (a,β, κ,λ) = 2
√

λlc cosh(
√

λ(1 − c)) + √
λ(1/

√
κ − √

κ)ls sinh(
√

λ(1 − c))

+ 2βlc sinh(
√

λ(1 − c))

+ 2 cosh(
√

λ(1 − a − c)) cosh(
√

λa)lsβ/
√

κ

− 2 sinh(
√

λ(1 − a − c)) sinh(
√

λa)lsβ
√

κ.
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We study the case β = √
λ. In view of (23) and (24) we have

∂aλ(a,β, κ) = ∂af (a,β, κ,λ(a,β, κ)) = 0,

and λ(a,β, κ) is consequently constant with respect to a, which means that any do-
main E in the class S1

c is optimal if there exists a β∗ such that
√

λ(a,β∗, κ) = β∗. In
view of (22) we have that

f (a,β, κ,β2) = 2β2 cos(cβ
√

κ)(cosh(β(1 − c)) + sinh(β(1 − c)))

+ β2(1/
√

κ − √
κ) sin(cβ

√
κ)(cosh(β(1 − c)) + sinh(β(1 − c)))

= eβ(1−c)(2β2 cos(cβ
√

κ) + β2(1/
√

κ − √
κ) sin(cβ

√
κ)).

If κ = 1, the smallest solution to f (a,β, κ,β2) = 0 is

β = β∗ = π/(2c
√

κ) = π/(2c). (26)

If κ > 1, the smallest solution of f (a,β, κ,β2) = 0 is given by

β = β∗ = 1

c
√

κ
arctan

2
√

κ

κ − 1
= 2

c
√

κ
arctan

1√
κ

. (27)

Finally, if κ < 1, the smallest solution of f (a,β, κ,β2) = 0 is given by

β = β∗ = 1

c
√

κ

(
arctan

2
√

κ

κ − 1
+ π

)
. (28)

We may now state the main result of this section.

Theorem 2 The principal eigenvalue λ(a,β, κ) is continuous with respect to β for
β ≥ 0. It is also symmetric with respect to a = (1 − c)/2 for 0 ≤ a ≤ 1 − c and:

• if β > β∗, then λ(a,β, κ) is strictly decreasing with respect to a, i.e. ∂aλ(a,β, κ) <

0, for 0 ≤ a ≤ (1 − c)/2; therefore the minimum of λ(a,β, κ) is attained for a =
(1 − c)/2.

• if β < β∗, then λ(a,β, κ) is strictly increasing with respect to a, i.e. ∂aλ(a,β, κ) >

0, for 0 ≤ a ≤ (1 − c)/2; therefore the minimum of λ(a,β, κ) is attained for a = 0
and a = 1 − c.

• if β = β∗, then λ(a,β, κ) is constant with respect to a and any 0 ≤ a ≤ 1 − c is a
global minimum for λ(a,β, κ).

Proof We start with the continuity. The symmetry of λ(a,β, κ) with respect to a =
(1 − c)/2 is obvious. Therefore we may assume that 0 ≤ a < (1 − c)/2. For fixed
a and κ , we define the function f̂ : R

2+ � (β,λ) �→ f (a,β, κ,λ) ∈ R. In view of the
definition of f , f̂ is clearly a C∞-function on R

2+. Due to (23)–(24) and a < (1−c)/2
we have

∂λf̂ (β,λ) = 0 ⇒ β = β∗ = √
λ(a,β∗, κ).
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Therefore, we may apply the implicit function theorem on ]0, β∗[ and ]β∗,+∞[ to
obtain the existence of a function λ(β) of class C∞ on ]0, β∗[ and ]β∗,+∞[ such
that

f̂ (β,λ(β)) = 0 on R
+ \ {β∗}.

For 0 < κ ≤ 1, one easily finds that ∂λf̂ (β,λ) > 0 for all β ∈ R+. Therefore we have
λ(β) ∈ C∞(R+,R) for 0 < κ ≤ 1. For κ > 1, the continuity on R+ will be obtained
below.

We now show the monotonicity of the eigenvalue with respect to β . First of all, in
view of (24), (25), and since ∂βλ(a,β, κ) > 0 as proved in [1], we have the following
sequence of implications

∂βf (a,β, κ,λ(a,β, κ)) = 0 ⇒ ∂λf (a,β, κ,λ(a,β, κ)) = 0

⇒ ∂af (a,β, κ,λ(a,β, κ)) = 0. (29)

According to (23) and due to 0 < λ < (π/c)2/κ we have

∂af (a,β, κ,λ(a,β, κ)) = 0 and 0 ≤ a ≤ (1 − c)/2 ⇔ β = √
λ(a,β, κ).

(30)
We have seen above that β = √

λ is equivalent to β = β∗. Thus,

∂βf (a,β, κ,λ(a,β, κ)) = 0 ⇒ β = β∗ = √
λ(a,β∗, κ). (31)

Since ∂βf (a,β, κ,λ(a,β, κ)) is linear with respect to β , it does not change sign
on the half-line β > β∗ and on the segment 0 < β < β∗. First assume that β > β∗.
This implies that β >

√
λ(a,β, κ). Indeed, assume that β <

√
λ(a,β, κ); the case

β = √
λ(a,β, κ) is obviously ruled out because it implies β = β∗. Since λ(a,β, κ)

is strictly monotone with respect to β , λ(a,β, κ) is bounded with respect to the
principal eigenvalue of the Dirichlet problem, i.e. problem (8)–(9) with β = ∞.
Thus, the principal eigenvalue λ is bounded as a function of β . Now, if there ex-
ists β∗ < β <

√
λ(a,β, κ), then invoking the continuity of λ(a,β, κ) with respect to

β on ]β∗,+∞[, there exists β0 such that β∗ < β0 = √
λ(a,β0, κ). However we have

seen that in this case we necessarily have β0 = β∗ which contradicts β∗ < β0.
According to (25), ∂βf (a,β, κ,λ(a,β, κ)) and ∂λf (a,β, κ,λ(a,β, κ)) have op-

posite signs. In view of (23) and (24) and thanks to β >
√

λ(a,β, κ) we then have
two cases:

(1) if ∂βf (a,β, κ,λ(a,β, κ)) > 0, then ∂aλ(a,β, κ) < 0,
(2) if ∂βf (a,β, κ,λ(a,β, κ)) < 0, then ∂aλ(a,β, κ) > 0.

The second case is not possible since for β = +∞, which corresponds to Dirichlet
boundary conditions, it is known [19] that we should have ∂aλ(a,β, κ) < 0. There-
fore we necessarily have ∂aλ(a,β, κ) < 0 if β > β∗.

Now we look at the case β < β∗. This implies that β <
√

λ(a,β, κ). Indeed,
assume that β >

√
λ(a,β, κ) (the case β = √

λ(a,β, κ) is obviously ruled out).
The principal eigenvalue λ has a positive lower bound as a function of β; see [22]
for details. Thus, if there exists β∗ > β >

√
λ(a,β, κ), then invoking the continu-

ity of λ(a,β, κ) with respect to β on ]0, β∗[, there exists β0 such that β∗ > β0 =
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√
λ(a,β0, κ). However we have seen that in this case we necessarily have β0 = β∗

which contradicts β∗ > β0.
In view of (23), (24), (25) and thanks to β <

√
λ(a,β, κ) we have two cases:

(1) if ∂βf (a,β, κ,λ(a,β, κ)) > 0 then ∂aλ(a,β, κ) > 0,
(2) if ∂βf (a,β, κ,λ(a,β, κ)) < 0 then ∂aλ(a,β, κ) < 0.

The second case is not possible since it includes the case β = 0 (Neumann boundary
conditions), and it is known [20] that we should have ∂aλ(a,β, κ) > 0 in this case.
Therefore we necessarily have ∂aλ(a,β, κ) > 0 if β < β∗.

Finally, since β <
√

λ(a,β, κ) on ]0, β∗[ and β >
√

λ(a,β, κ) on ]β∗,∞[, the
monotonicity of λ(a,β, κ) with respect to β implies that λ(a,β, κ) is continuous
with respect to β also at β = β∗. �

3 Cylindrical Domains

In Sect. 2 we have obtained pivotal results about the optimal weight function m in one
dimension. Using this knowledge, we would like to move on to multi-dimensional
problems. Unlike in one dimension, it is not possible to perform explicit calculations,
unless we consider particular geometries for �. Thus, as a first step towards the study
of general multi-dimensional domains, we propose to look at cylindrical domains in
R

N with mixed Robin-Neumann conditions. Indeed, this allows to separate variables
and exploit the results in one dimension obtained in Sect. 2. On the top and bottom
of the cylinder we impose Robin boundary conditions while on the lateral boundary
Neumann conditions are prescribed. The problem with Neumann boundary condi-
tions on the whole boundary was studied in [18].

We determine if the “strip” touching the shorter side of the rectangle is a local
optimizer or not for the minimization problem (6). For this purpose, in this section
we introduce the strip �+

0 corresponding to m = κ and consider small perturbations
�+

ε of �+
0 in terms of a function g and a small factor ε. Using classical methods of

asymptotic analysis, we obtain asymptotic expansions of λε and ϕε , respectively the
eigenvalue and eigenvector corresponding to �+

ε , with respect to ε. The subsequent
sections are dedicated to determining the optimality of this strip using the obtained
asymptotic expansions.

Let � be a cylindrical domain in R
N given by

� := (0,1) × D ⊂ R
N, N ≥ 2, (32)

where D is a bounded domain in R
N−1 with smooth boundary ∂D. We denote by

 := {0,1} × D and � := (0,1) × ∂D the top and bottom and the lateral boundary
of the cylinder �, respectively. Let �+

0 and �−
0 be subsets of � defined by

�+
0 := (0, c) × D, �−

0 := (c,1) × D (33)

with a parameter c ∈ (0,1), and set m(x,y) = κ if (x, y) ∈ �+
0 and m(x,y) = −1 if

(x, y) ∈ �−
0 , where x ∈ (0,1) and y ∈ D. Note that (3) is equivalent to 0 < c < c∗ :=

(κ + 1)−1.
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We perturb the problem (1) as follows. Let g : D → R be any L2-function satisfy-
ing ∫

D

g(y)dy = 0, (34)

and define the perturbed domain � = �+
ε ∪ �−

ε with

�+
ε := {(x, y) ∈ R × R

N−1 : 0 < x < c + εg(y), y ∈ D},
�−

ε := {(x, y) ∈ R × R
N−1 : c + εg(y) < x < 1, y ∈ D},

where ε > 0 is a small parameter. Then set mε(x, y) = κ if (x, y) ∈ �+
ε , mε(x, y) =

−1 if (x, y) ∈ �−
ε and consider the perturbed problem⎧⎨

⎩
�ϕε + λεmεϕε = 0 in �,

∂nϕε + βϕε = 0 on ,

∂nϕε = 0 on �.

(35)

For ε = 0, the solution ϕ0 of (35) is independent of y, i.e. ϕ0(x, y) =: ϕ(x). The main
goal of this section is to find a formal asymptotic expansion of λε for small ε > 0. To
this end, we consider the following ansätze for λε and ϕε

λε = λ + ελ1 + ε2λ2 + · · · ,

ϕε(x, y) = ϕ(x) + εϕ1(x, y) + ε2ϕ2(x, y) + · · · ,
(36)

where (ϕ,λ) is an eigenpair of the one-dimensional problem (8)–(9). We substitute
ansätze (36) into the weak form

−
∫

�

∇ϕε · ∇ψ −
∫

∂�

∂nϕεψ + λε

∫
�

mεϕεψ = 0 for any ψ ∈ C1(�), (37)

and gather ε0-, ε1- and ε2-order terms according to the procedure in [18]. In this way
we obtain the equations fulfilled by ϕ1, λ1 and λ2. Since the calculations to obtain
these equations are similar to those in [18], we do not reproduce them here for the
sake of compactness and refer to [18, Sect. 3] for details. We actually obtain λ1 = 0
and ϕ1 must satisfy the equation{

�ϕ1 + λκϕ1 = 0 in (0, c) × D,

�ϕ1 − λϕ1 = 0 in (c,1) × D,
(38)

with the boundary conditions

∂nϕ1 + βϕ1 = 0 on , ∂nϕ1 = 0 on �, (39)

and the transmission condition

∂ϕ1

∂x

(
lim
x↑c

x
)

− ∂ϕ1

∂x

(
lim
x↓c

x
)

:= ∂ϕ1

∂x

∣∣∣∣
x=c+

x=c−
= −λ(κ + 1)ϕ(c)g(y), y ∈ D. (40)
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Finally, from ε2-order terms, we derive (see [18, Sect. 3]) that λ2 is expressed as

λ2 = −λ(κ + 1)ϕ(c)
∫
D

ϕ1(c, y)g(y) + ϕ′(c)g2(y) dy∫
�

mϕ2
. (41)

Since λ1 = 0 for this geometric configuration, m is a candidate for providing a
local minimizer of the principal eigenvalue. To determine whether λ is indeed a local
minimizer we need to study the sign of λ2. In the following sections we show that the
principal eigenvalue λ is not locally minimal if

I [g] :=
∫

D

ϕ1(c, y)g(y) + ϕ′(c)g2(y) dy > 0

for some g ∈ L2(D).

4 Determination of the Sign of λ2

The main result of this section is Lemma 1, where the sign of λ2 is established de-
pending on the value of β and on the smallest positive eigenvalue μ of the lower-
dimensional problem {

�yV + μV = 0 in D,

∂nV = 0 on ∂D.
(42)

For the analysis, we compute λ2 in the particular case where g(y) is an eigenfunction
of (42) associated with a positive eigenvalue μ > 0. Notice that (34) constitutes a
normalization of the eigenfunction in this case. Later on, any function g in L2 may
be expanded in terms of eigenfunctions of (42). This enables us to use the results
of this section, also in the general case. We set ϕ1(x, y) = P(x)g(y) and infer from
(38), (39) and (40) that P satisfies⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P ′′(x) + (λκ − μ)P (x) = 0, 0 < x < c,

P ′′(x) − (λ + μ)P (x) = 0, c < x < 1,

P ′(0) − βP (0) = P ′(1) + βP (1) = 0,

P (c+) = P(c−),

P ′(c+) − P ′(c−) = −λ(κ + 1)ϕ(c).

(43)

Due to the unknown sign of λκ − μ in (43), we compute the solution to (43) by
distinguishing the three cases μ < λκ , μ = λκ and μ ≥ λκ .

4.1 [Case I: μ < λκ], Computation of P

We write P as

P(x) =
{
C3 cos

√
λκ − μx + C4 sin

√
λκ − μx, 0 < x < c,

C5 cosh
√

λ + μ(x − 1) + C6 sinh
√

λ + μ(x − 1), c < x < 1
(44)
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with constants Ci , i ∈ {3,4,5,6}. The Robin boundary conditions for P yield

βC3 = √
λκ − μC4, βC5 = −√

λ + μC6. (45)

From the transmission condition (40) at x = c, we obtain

C5
√

λ + μ sinh(
√

λ + μ(c − 1)) + C6
√

λ + μ cosh(
√

λ + μ(c − 1))

+ C3
√

λκ − μ sin(
√

λκ − μc) − C4
√

λκ − μ cos(
√

λκ − μc)

= −λ(κ + 1)ϕ(c), (46)

C3 cos(
√

λκ − μc) + C4 sin(
√

λκ − μc)

= C5 cosh(
√

λ + μ(c − 1)) + C6 sinh(
√

λ + μ(c − 1)). (47)

For simplicity, we introduce the following notation:

hc := cosh(
√

λ + μ(1 − c)), hs := sinh(
√

λ + μ(1 − c)),

kc := cos(
√

λκ − μc), ks := sin(
√

λκ − μc).

Observe that hs = − sinh(
√

λ + μ(c − 1)). Using (45)–(47) results in

C6 = λ(κ + 1)ϕ(c)β(
√

λκ − μkc + βks)

�(μ)
, (48)

with

�(μ) = −(
√

λκ − μkc + βks)((λ + μ)hs + β
√

λ + μhc)

+ ((λκ − μ)ks − β
√

λκ − μkc)(
√

λ + μhc + βhs).

Next, we show that �(μ) < 0 for λκ > μ > 0. With a = 0, (17) represents the char-
acteristic equation which determines λ(0, β, κ). We actually observe that �(0) =
f (0, β, κ,λ) and thus �(0) = 0, indeed

�(0) = h0
c[k0

s (−λκ +β2)+ 2β
√

λκk0
c ]+h0

s [k0
s (−β

√
λκ +β

√
λ)+√

κ(λ+β2)k0
c ],

where the notation h0
c, h

0
s , k

0
c , k

0
s stands for hc,hs, ks, ks with μ = 0. Denoting for

μ > 0

�1(μ) = �(μ)

(
√

λκ − μkc + βks)(
√

λ + μhc + βhs)

we get

�1(μ) = − (λ + μ)hs + β
√

λ + μhc

(
√

λ + μhc + βhs)
+ (λκ − μ)ks − β

√
λκ − μkc

(
√

λκ − μkc + βks)

= −
√

λ + μ tanh
√

λ + μ(1 − c) + β

1 + β√
λ+μ

tanh
√

λ + μ(1 − c)
+

√
λκ − μ tan

√
λκ − μc − β

1 + β√
λκ−μ

tan
√

λκ − μc
.
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First observe that
√

λ + μ tanh
√

λ + μ(1 − c) and
√

λκ − μ tanh
√

λκ − μc − β are
strictly increasing and decreasing functions of μ, respectively. Secondly observe that

β√
λ+μ

tanh
√

λ + μ(1 − c) is a strictly decreasing function of μ due to the properties

of the tanh-function, whereas β√
λκ−μ

tan
√

λκ − μc is a strictly increasing function

of μ due to the properties of the tan-function. Therefore �1(μ) is a strictly decreasing
function of μ. Since �1(0) = 0, we get �1(μ) < 0 for λκ > μ > 0 and in view of

(
√

λκ − μkc + βks)(
√

λ + μhc + βhs) > 0

we obtain �(μ) < 0 for λκ > μ > 0. Note that (48) is always well-defined since
μ > 0. The sign of �(μ) and C6 will be used in the following section to determine
the sign of I [g].
4.2 [Case I: μ < λκ], Computation of I [g]
We may write I [g] as

I [g] = (P (c) + ϕ′(c))
∫

D

g2(y) dy. (49)

Assuming μ < λκ , we have

P(c) + ϕ′(c) = C5hc − C6hs + ϕ′(c) = C6(−β−1
√

λ + μhc − hs) + ϕ′(c).

The function ϕ is given by (16) with a = 0, i.e. we have

ϕ(x) =
{
C̃3 cos

√
λκx + C̃4 sin

√
λκx in (0, c),

C̃5 cosh
√

λ(x − 1) + C̃6 sinh
√

λ(x − 1) in (c,1).
(50)

Using boundary and transmission conditions (13)–(15) at x = c we obtain

ϕ(c) = C̃4(β
−1

√
λκ cos

√
λκc + sin

√
λκc) = C̃4(β

−1
√

λκlc + ls), (51)

ϕ′(c) = C̃4(−β−1λκ sin
√

λκc + √
λκ cos

√
λκc) = C̃4(−β−1λκls + √

λκlc),

(52)

where C̃4 is a constant which depends on the normalization chosen for ϕ. Note that
C̃4 > 0 since λ is a principal eigenvalue. Hence, P(c) + ϕ′(c) > 0 (i.e. I [g] > 0) if

−C6(β
−1

√
λ + μhc + hs) > −ϕ′(c). (53)

We have −C6 > 0 and β−1√λ + μhc + hs > 0. Therefore, if −ϕ′(c) ≤ 0, inequality
(53) holds true. Thus, we study the sign of −ϕ′(c) as a function of β .

−ϕ′(c) = 0 ⇐⇒ C̃4(β
−1λκ sin

√
λκc − √

λκ cos
√

λκc) = 0

⇐⇒ β = √
λκ tan

√
λκc.

Clearly, −ϕ′(c) is also a decreasing function of β . Therefore, setting

β̂ = √
λκ tan

√
λκc, (54)
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we have −ϕ′(c) < 0 for β > β̂ , −ϕ′(c) = 0 for β = β̂ and −ϕ′(c) > 0 for β < β̂ .
Thus, (53) holds true for β ≥ β̂ . Next we study the case β < β̂ . The latter implies
−ϕ′(c) > 0. Dividing by −ϕ′(c) in (53) and using (48) yields

λ(κ + 1)ϕ(c)

−ϕ′(c)
>

−�(μ)

(
√

λκ − μkc + βks)(
√

λ + μhc + βhs)
.

Inserting (51)–(52) and the expression for �(μ) we find that (53) is equivalent to

g1(β) > g2(β,μ) + g3(β,μ), (55)

with

g1(β) = λ(κ + 1)

√
λκlc + βls

λκls − β
√

λκlc
, g2(β,μ) = (λ + μ)hs + β

√
λ + μhc√

λ + μhc + βhs

, (56)

g3(β,μ) = −(λκ − μ)ks + β
√

λκ − μkc√
λκ − μkc + βks

. (57)

We study now the behaviour of g1, g2 and g3 as functions of β . Differentiating with
respect to β yields

∂βg1(β) = λ(κ + 1)
λκ

(λκls − β
√

λκlc)2
> 0,

∂βg2(β,μ) = λ + μ

(
√

λ + μhc + βhs)2
> 0,

∂βg3(β,μ) = λκ − μ

(
√

λκ − μkc + βks)2
> 0.

Thus, g1, g2 and g3 are increasing functions of β . We have the estimates

g2(β,μ) = (λ + μ)hs + β
√

λ + μhc√
λ + μhc + βhs

≤ (λ + μ)hs + β
√

λ + μhc√
λ + μhc

= √
λ + μ tanh

√
λ + μ(1 − c) + β,

and further g3(β,μ) ≤ −√
λκ − μ tan

√
λκ − μc + β . Since −√

λκ − μ ×
tan

√
λκ − μc < 0 and μ < λκ we get

g2(β,μ) + g3(β,μ) ≤ √
λ + μ tanh

√
λ + μ(1 − c) + 2β ≤ √

λ(1 + κ) + 2β. (58)
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Simplifying g1(β,μ) results in

g1(β) = λ(κ + 1)

√
λκlc + βls

λκls − β
√

λκlc
= λ(κ + 1)

1 + β(
√

λκ)−1 tan
√

λκc

−β + √
λκ tan

√
λκc

= λ(κ + 1)
1 + ββ̂(λκ)−1

−β + β̂
.

Based on this expression of g1, we now show that

g1(β) ≥ √
λ(1 + κ) + 2β̂ ≥ g2(β,μ) + g3(β,μ).

For this purpose, we first look for a solution to the equation g1(β) = √
λ(1 + κ)+2β̂.

A few transformations lead to

β = β̂(2β̂ − √
λ(1 + κ)) − λ(1 + κ)

β̂ 1+κ
κ

+ 2β̂ + √
λ(1 + κ)

. (59)

Using β̂ = √
λκ tan

√
λκc and (19) we get β̂ = √

λ tanh
√

λ(1 − c) ≤ √
λ. On one

hand, if 2β̂ −√
λ(1 + κ) ≤ 0, then the solution β̃ of (59) satisfies β̃ < 0. On the other

hand, if 2β̂ − √
λ(1 + κ) > 0, we use β̂ ≤ √

λ and obtain

β̃ ≤ λ(1 − κ − √
1 + κ)

β̂ 1+κ
κ

+ 2β̂ + √
λ(1 + κ)

< 0. (60)

Therefore, in any case we obtain β̃ < 0. Since g1(β) is increasing as a function of β ,
we have

g1(β) ≥ √
λ(1 + κ) + 2β̂ for all 0 < β < β̂,

and since g2(β,μ), g3(β,μ) are also increasing functions of β we finally obtain

g1(β) ≥ √
λ(1 + κ) + 2β̂ ≥ g2(β,μ) + g3(β,μ) for all 0 < β < β̂.

Therefore, (53) and P(c) + ϕ′(c) > 0 (i.e. I [g] > 0) hold true for all β ≥ 0.

4.3 [Case II: μ = λκ], Computation of P

The case μ = λκ is critical as we get P ′′(x) = 0 for 0 < x < c in (43), and therefore
the solution P is not given by (44), except for β = 0. However, the calculation of P

leads to a similar conclusion as for the case μ < λκ . In fact, we are looking for a
solution of the type

P(x) =
{

C3 + C4x, 0 < x < c,

C5 cosh
√

λ + μ(x − 1) + C6 sinh
√

λ + μ(x − 1), c < x < 1,
(61)

with constants Ci , i ∈ {3,4,5,6}. After similar calculations as for the case μ < λκ ,
we end up with the formula

C6 = λ(κ + 1)ϕ(c)β(1 + βc)

�(μ)
, (62)
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with �(μ) = −(1+βc)((λ+μ)hs +β
√

λ + μhc)−β(
√

λ + μhc +βhs) < 0. Thus
we have C6 < 0 as before. The values of ϕ(c) and ϕ′(c) are independent of μ and are
thus, still given by (51)–(52). Hence, we also have P(c)+ ϕ′(c) > 0 (i.e. I [g] > 0) if

−C6(β
−1

√
λ + μhc + hs) > −ϕ′(c), (63)

and (63) is always true if β ≥ β̂ . When β < β̂ , (63) can be rewritten as

g1(β) > g2(β,μ) + g3(β), (64)

where g1 and g2 are given by (56) and g3(β) = β(1 + βc)−1 ≤ β . Consequently, we
derive the same estimate as (58), i.e.

g2(β,μ) + g3(β) ≤ √
λ + μ tanh

√
λ + μ(1 − c) + 2β ≤ √

λ(1 + κ) + 2β, (65)

and we obtain the same conclusion as in the case μ < λκ , i.e. P(c) + ϕ′(c) > 0 (i.e.
I [g] > 0) for all β ≥ 0.

4.4 [Case III: μ > λκ], Computation of P

In this case, P is only composed of hyperbolic functions:

P(x) =
{
C3 cosh

√
μ − λκx + C4 sinh

√
μ − λκx, 0 < x < c,

C5 cosh
√

λ + μ(x − 1) + C6 sinh
√

λ + μ(x − 1), c < x < 1.

The Robin boundary conditions for P provide

βC3 = √
μ − λκC4, βC5 = −√

λ + μC6. (66)

From the transmission condition at x = c, we have

C5
√

λ + μ sinh(
√

λ + μ(c − 1)) + C6
√

λ + μ cosh(
√

λ + μ(c − 1))

− C3
√

μ − λκ sinh(
√

μ − λκc) − C4
√

μ − λκ cosh(
√

μ − λκc)

= −λ(κ + 1)ϕ(c), (67)

C3 cosh(
√

μ − λκc) + C4 sinh(
√

μ − λκc)

= C5 cosh(
√

λ + μ(c − 1)) + C6 sinh(
√

λ + μ(c − 1)). (68)

For simplicity, set

hc := cosh(
√

λ + μ(1 − c)), hs := sinh(
√

λ + μ(1 − c)),

kc := cosh(
√

μ − λκc), ks := sinh(
√

μ − λκc).

Notice that hs = − sinh(
√

λ + μ(c − 1)). Using (66)–(68) we find

C6 = λ(κ + 1)ϕ(c)β(
√

μ − λκkc + βks)

�(μ)
, (69)
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with

�(μ) = −(
√

μ − λκkc + βks)((λ + μ)hs + β
√

λ + μhc)

− ((μ − λκ)ks + β
√

μ − λκkc)(
√

λ + μhc + βhs).

We observe that �(μ) < 0 for μ > λκ and �(λκ) = 0. This also implies C6 < 0 for
μ > λκ . We now use the knowledge of the sign of C6 to determine the sign of I [g].
4.5 [Case III: μ > λκ], Computation of I [g]
First observe that

I [g] = (P (c) + ϕ′(c))
∫

D

g2(y) dy. (70)

For μ > λκ , we have

P(c) + ϕ′(c) = C5hc − C6hs + ϕ′(c) = C6(−β−1
√

λ + μhc − hs) + ϕ′(c).

The values of ϕ(c) and ϕ′(c) are given by (51) and (52), respectively. Hence, P(c) +
ϕ′(c) > 0 (i.e. I [g] > 0) whenever

−C6(β
−1

√
λ + μhc + hs) > −ϕ′(c). (71)

As in the case μ < λκ , we have that −C6 and β−1√λ + μhc +hs are positive. There-
fore, if −ϕ′(c) < 0, inequality (71) holds true. Consequently, we draw the same con-
clusion as before, i.e. (71) is satisfied for β ≥ β̂ . Next we study the case β < β̂ , which
implies −ϕ′(c) > 0. Dividing by −ϕ′(c) in (71) and using (69) yields

λ(κ + 1)ϕ(c)

−ϕ′(c)
>

−�(μ)

(
√

μ − λκkc + βks)(
√

λ + μhc + βhs)
.

Inserting (51)–(52) and the expression of �(μ) we obtain that (53) is equivalent to

g1(β) > g2(β,μ) + g3(β,μ), (72)

with

g1(β) = λ(κ + 1)

√
λκlc + βls

λκls − β
√

λκlc
, g2(β,μ) = (λ + μ)hs + β

√
λ + μhc√

λ + μhc + βhs

,

g3(β,μ) = (μ − λκ)ks + β
√

μ − λκkc√
μ − λκkc + βks

.

Next we show that g2 and g3 are increasing functions of μ. Since g1 does not depend
on μ, equality (72) occurs for some μc. Further, we may rewrite g2 and g3 as

g2(β,μ) =
√

λ + μ tanh
√

λ + μ(1 − c) + β

1 + β√
λ+μ

tanh
√

λ + μ(1 − c)
,

g3(β,μ) =
√

μ − λκ tanh
√

μ − λκc + β

1 + β√
μ−λκ

tanh
√

μ − λκc
.
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As before, we conclude that g2 and g3 are increasing functions of μ and

lim
μ→∞(g2(β,μ) + g3(β,μ)) = +∞ for all 0 ≤ β < β̂.

Consequently, for β < β̂ there exists a unique μc = μc(β) such that g1(β) =
g2(β,μc) + g3(β,μc), or, in other words, the equation for μc(β) is

λ(κ + 1)

√
λκ + β tan

√
λκc

λκ tan
√

λκc − β
√

λκ

=
√

λ + μc tanh
√

λ + μc(1 − c) + β

1 + β√
λ+μc

tanh
√

λ + μc(1 − c)
+

√
μc − λκ tanh

√
μc − λκc + β

1 + β√
μc−λκ

tanh
√

μc − λκc
. (73)

Note that for β = 0 we get the equation for the Neumann case√−λκ + μc tanh
√−λκ + μcc + √

λ + μc tanh
√

λ + μc(1 − c)

= (κ + 1)
√

λ/κ cot
√

λκc; (74)

compare [18]. Therefore in [Case III: μ > λκ], we conclude:

I [g]

⎧⎪⎪⎨
⎪⎪⎩

<0 if 0 ≤ β < β̂ and μ > μc,

=0 if 0 ≤ β < β̂ and μ = μc,

>0 if 0 ≤ β < β̂ and λκ < μ<μc,

>0 if β ≥ β̂.

Summarizing all cases studied above, we obtain the following lemma.

Lemma 1 Let μ be the smallest positive eigenvalue of (42), and let β̂ , μc be the
numbers defined by (54), (73), respectively. If (μ < μc and β < β̂) or (β ≥ β̂), then
the number λ2 defined by (41) satisfies λ2 < 0. If (μ > μc and β < β̂) then λ2 > 0
and if (μ = μc and β < β̂) then λ2 = 0.

Remark 2 In one dimension, we have observed that there exists a certain β∗ such that
for β < β∗ the optimal m is the same as for the Neumann problem, while for β > β∗
the optimal m is the same as for the Dirichlet problem. In two dimensions, Lemma 1
indicates that we have a similar phenomenon. For β < β̂ , the conclusion is similar to
the Neumann case [18], i.e. for μ < μc the strip is not optimal, but for μ ≥ μc it may
be optimal, whereas for β ≥ β̂ it is never optimal. Indeed, for β ≥ β̂ , it is probable
that the behaviour is similar to the Dirichlet problem and therefore the solution is
located rather in the center of the domain and does not touch the boundary.

5 Non-optimality Case of the Strip �+
0

In this section we show that the “strip” �+
0 is not locally optimal when λ2 < 0. For

this purpose, we use the following characterization of the positive principal eigen-
value [4].
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Lemma 2 The positive principal eigenvalue λ of (1) is given by the minimum of the
Rayleigh quotient

λ = inf
ψ∈S(m)

∫
�

|∇ψ |2 + β
∫
∂�

ψ2 ds∫
�

mψ2
, (75)

where S(m) := {ψ ∈ H 1(�) : ∫
�

mψ2 > 0}. Moreover, λ is simple, and the infimum
is attained only by associated eigenfunctions that do not change sign in �.

Considering (75) with mε instead of m, where m corresponds to the aforemen-
tioned “strip”, and choosing an appropriate feasible point ψ ∈ S(mε) we show that
λ(mε) < λ(m) and thus that the strip is not the optimal distribution in this case. Our
main result is the following:

Theorem 3 If (μ < μc and β < β̂) or (β ≥ β̂), then the eigenvalue λ corresponding
to m = κχE − χ�\E and � given by (32), is not locally optimal.

Proof Using Lemma 2, we compare λ and λε . For this purpose, we define the func-
tional

Jε[ψ] := −
∫

�

|∇ψ |2 − β

∫
∂�

ψ2 ds + λ

∫
�

mε(x)ψ2, (76)

and show that Jε[ψ] > 0 for some appropriate ψ ∈ S(mε) and small ε > 0. In the
argument in Sect. 3, ϕ2 does not play any role in determining λ2. Hence we choose
ψ = ϕ + εϕ1 as a test function, where ϕ1 is the solution of (38)–(40) constructed in
Sect. 4.1.

Since ϕ ∈ S(m), we have ψ ∈ S(mε) by continuity for sufficiently small ε and

Jε[ϕ + εϕ1] = −
∫

�

|∇(ϕ + εϕ1)|2 − β

∫
∂�

(ϕ + εϕ1)
2 ds + λ

∫
�

mε(x)(ϕ + εϕ1)
2.

The first and the second term are written as∫
�

|∇(ϕ + εϕ1)|2 =
∫

�

|∇ϕ|2 + 2ε

∫
�

∇ϕ · ∇ϕ1 + ε2
∫

�

|∇ϕ1|2,∫
∂�

(ϕ + εϕ1)
2 ds =

∫
∂�

ϕ2 ds + 2ε

∫
∂�

ϕϕ1 + ε2ϕ2
1 ds.

Using the definition of mε , we obtain∫
�

mε(ϕ + εϕ1)
2 =

∫
�

mϕ(ϕ + εϕ1) + ε

[∫
�

mϕ1(ϕ + εϕ1)

+ (κ + 1)

∫
D

ϕ(c)(ϕ(c) + εϕ1(c, y))g(y) dy

]

+ ε2
[
(κ +1)

∫
D

{
ϕ1(c, y)ϕ(c)g(y)+ ∂

∂x
(ϕ2)

∣∣∣
x=c

· g2(y)

2

}
dy

]
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+ O(ε3)

=
∫

�

mϕ2 + ε

[
2
∫

�

mϕϕ1 + (κ + 1)ϕ(c)2
∫

D

g(y)dy

]

+ ε2

[∫
�

mϕ2
1 + (κ + 1)

∫
D

ϕ(c)ϕ1(c, y)g(y) dy

+ (κ + 1)ϕ(c)

∫
D

{
ϕ1(c, y)g(y) + ϕ′(c)g(y)2

}]
+ O(ε3).

Hence, using (34) and (41) we obtain

∫
�

mε(ϕ + εϕ1)
2 =

∫
�

mϕ2 + 2ε

∫
�

mϕϕ1 + ε2

[∫
�

mϕ2
1

+ (κ + 1)

∫
D

ϕ(c)ϕ1(c, y)g(y) dy − λ2

λ

∫
�

mϕ2

]

+ O(ε3).

This shows

Jε[ϕ + εϕ1] = −
∫

�

|∇ϕ|2 − β

∫
∂�

ϕ2 ds + λ

∫
�

mϕ2

+ 2ε

[
−

∫
�

∇ϕ · ∇ϕ1 − β

∫
∂�

ϕϕ1 ds + λ

∫
�

mϕϕ1

]

+ ε2

[
−

∫
�

|∇ϕ1|2 − β

∫
∂�

ϕ2
1 ds + λ

∫
�

mϕ2
1

+ (κ + 1)λ

∫
D

ϕ(c)ϕ1(c, y)g(y) dy − λ2

∫
�

mϕ2

]

+ O(ε3)

= ε2

[
−

∫
�

|∇ϕ1|2 − β

∫
∂�

ϕ2
1 ds + λ

∫
�

mϕ2
1

+ (κ + 1)λ

∫
D

ϕ(c)ϕ1(c, y)g(y) dy − λ2

∫
�

mϕ2

]

+ O(ε3).

Here, due to (38), (39) and (40) we have that∫
�

|∇ϕ1|2 =
∫

�+
0

|∇ϕ1|2 +
∫

�−
0

|∇ϕ1|2



132 Appl Math Optim (2012) 65:111–146

= −
∫

�+
0

ϕ1�ϕ1 +
∫

D

∂ϕ1

∂x

∣∣∣∣∣
x=c−

ϕ1(c, y) dy

−
∫

�−
0

ϕ1�ϕ1 −
∫

D

∂ϕ1

∂x

∣∣∣∣∣
x=c+

ϕ1(c, y) dy − β

∫
∂�

ϕ2
1 ds

= λ

∫
�

mϕ2
1 + (κ + 1)λ

∫
D

ϕ(c)ϕ1(c, y)g(y) dy.

Consequently, we obtain

Jε[ϕ + εϕ1] = −ε2λ2

∫
�

mϕ2 + O(ε3). (77)

This, together with λ2 < 0 according to Lemma 1, implies Jε[ϕ + εϕ1] > 0 and in
turn λε < λ for ε small enough, showing that λ is not locally optimal. �

6 Optimality Case of the Strip �+
0

Now, we assume β < β̂ and μ > μc, where μ is the smallest eigenvalue of (42) and
μc solves (73). We show that λ is locally minimal in the class of functions

G := {g ∈ L2(D) : g satisfies (34)}.

Theorem 4 If β < β̂ and μ > μc, then the first eigenvalue λ�+
0

of (1) is a local

minimum in the set of all perturbations g ∈ G , with the strip �+
0 given by (33).

Proof Let {Vj } be an orthonormal basis which consists of eigenfunctions of (42):

{
�Vj + μjVj = 0 in D,

∂
∂ny

Vj = 0 on ∂D.
(78)

In particular, we set μ0 = 0 and V0 = 1/|D|. Since g is orthogonal to V0 by
(34), we expand g as g = ∑∞

j=1 djVj . Then ϕ1 is computed as ϕ1(x, y) =∑∞
j=1 djPj (x)Vj (y), where Pj satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P ′′
j (x) + (λκ − μj )Pj (x) = 0, 0 < x < c,

P ′′
j (x) − (λ + μj )Pj (x) = 0, c < x < 1,

P ′
j (0) − βPj (0) = P ′

j (1) + βPj (1) = 0,

Pj (c+) = Pj (c−),

P ′
j (c+) − P ′

j (c−) = −λ(κ + 1)ϕ(c).
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We compute

I [g] =
∫

D

ϕ1(c, y)g(y) + ϕ′(c)g2(y) dy

=
∫

D

( ∞∑
j=1

djPj (c)Vj (y)

)( ∞∑
j=1

djVj (y)

)
dy +

∫
D

ϕ′(c)
( ∞∑

j=1

djVj (y)

)2

dy

=
∞∑

j=1

d2
j Pj (c) + ϕ′(c)

∞∑
j=1

d2
j = (Pj (c) + ϕ′(c))

∞∑
j=1

d2
j ,

where we use
∫
D

Vj (y)Vk(y) dy = 1 if j = k and 0 if j �= k. From Sect. 4.5 we know
that Pj (c) + ϕ′(c) < 0 if μj > μc and β < β̂ . By assumption, μj ≥ μ > μc for all j

and we obtain I [g] < 0 as well as λ2 > 0. Thus, we have shown that λε > λ holds for
any g �= 0, g ∈ L2(D), and sufficiently small ε �= 0. �

7 Numerical Results

Now we define an algorithm which is based on the variational formulation (75) of
the principal eigenvalue. Since it strongly relies on the Rayleigh quotient (75), it is
particularly designed for eigenvalue problems and may have limited applicability for
more general minimization problems. In contrast to methods relying on shape and
topological sensitivities [10, 15, 21, 24, 25] it does not make use of derivative or
local perturbation based techniques. In our numerical tests it typically converges to
the global optimum of the respective problem, although this has not been established
theoretically. In special cases it may get stuck at critical points.

7.1 Algorithm

In this section, we are interested in finding an optimal configuration m which mini-
mizes the principle eigenvalue λ of (1) and satisfies the constraint (2). According to
Theorem 1, we are looking for an optimal configuration m of bang-bang type, i.e.

m(x) := mE(x) =
{

κ if x ∈ E,

−1 if x ∈ � \ E.
(79)

Our method utilizes the rearrangement approach proposed in [11, 17, 26].
We initialize our algorithm by E0 ⊂ R

N with |E0| = m0 and the initial weight
mE0(x) := κ if x ∈ E0 and mE0(x) := −1 if x ∈ � \ E0. Let (ϕE0 , λE0) be the eigen-
pair associated to (1). Given h ∈ R, we define the variable domain E(h) := {x ∈ � :
ϕE0(x) ≥ h} and associated volume z(h) = |E(h)|. Defining h0 = min{ϕE0(x) : x ∈
E0}, we then have E0 ⊂ E(h0) and m0 ≤ z(h0). The function z is obviously con-
tinuous and decreasing with respect to h. Therefore there exists h1 ≥ h0 such that
m0 = z(h1) ≤ z(h0). Define the new set E1 := E(h1) and let (ϕE1, λE1) be the eigen-
pair associated to mE1 . Then we have the following result regarding E1.
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Lemma 3 The eigenvalues associated with E0 and E1 satisfy λE1 ≤ λE0 .

Proof First we prove that
∫
�

mE1ϕ
2
E0

≥ ∫
�

mE0ϕ
2
E0

. In fact, we have∫
�

mE1ϕ
2
E0

−
∫

�

mE0ϕ
2
E0

=
∫

(E1\E0)∪(E0\E1)

(mE1 − mE0)ϕ
2
E0

= (κ + 1)

∫
E1\E0

ϕ2
E0

− (κ + 1)

∫
E0\E1

ϕ2
E0

= (κ + 1)

(∫
E1\E0

ϕ2
E0

−
∫

E0\E1

ϕ2
E0

)
≥ 0.

Indeed, in view of the definition of E1, for all x ∈ E0 \ E1 and all y ∈ E1 \ E0 we
have ϕE0(y) ≥ h1 > ϕE0(x). We also use |E1 \ E0| = |E0 \ E1|, which is due to
z(h1) = m0, to compare the integrals.

Using the variational formulation (75) we get

λE0 =
∫
�

|∇ϕE0 |2 + β
∫
∂�

ϕ2
E0

ds∫
�

mE0ϕ
2
E0

≥
∫
�

|∇ϕE0 |2 + β
∫
∂�

ϕ2
E0

ds∫
�

mE1ϕ
2
E0

≥ inf
ψ∈S(m)

∫
�

|∇ψ |2 + β
∫
∂�

ψ2 ds∫
�

mE1ψ
2

= λE1

and the proof is complete. �

Note that the equality case in Lemma 3 only happens when E0 = E(h0), which is
equivalent to ϕE0 being constant on ∂E0. This property at the critical point has been
proved for Dirichlet boundary conditions in [12].

Remark 3 Our algorithm may be seen as a natural application of the Rayleigh quo-
tient formulation of the eigenvalue. Indeed, the problem of minimizing λ(m) with
respect to m is a min-min problem due to the Rayleigh quotient (75). Exchanging the
two min we may rewrite the problem as

min
m∈M

λ(m) = min
ψ∈S(m)

min
m∈M

∫
�

|∇ψ |2 + β
∫
∂�

ψ2 ds∫
�

mψ2
.

For fixed ψ ∈ S(m) the minimization with respect to m is equivalent to solving a max
problem

min
m∈M

∫
�

|∇ψ |2 + β
∫
∂�

ψ2 ds∫
�

mψ2
⇔ max

m∈M

∫
�

mψ2∫
�

|∇ψ |2 + β
∫
∂�

ψ2 ds
. (80)

The solution of the max problem for fixed ψ in (80) is in fact exactly the level set
E(h1) in our algorithm. The minimization with respect to ψ then corresponds to
finding the eigenfunction for the new set E(h1).

At the discrete level, we need to first compute the forward eigenvalue problem (1),
i.e. finding the eigenpair (λ,ϕ) for given m, then look for the rearrangement satisfy-
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ing Lemma 3, and then we repeat this procedure until no furthermore rearrangement
of m or improvement of the eigenvalue can be obtained. The forward problem is built
by expanding the eigenfunction in terms of a finite element basis (i.e., ϕ = ∑

i∈I ϕiξi ,
where ξi are basis functions and I ⊂ N is a set of indices), multiplying by a basis
element, and integrating over the domain �. We assume that m is constant in each
element, i.e. either m = −1 or m = κ . This leads to a generalized eigenvalue equation
which can be solved by the Arnoldi algorithm [3]. Our implementation relies on the
Matlab Partial Differential Equation Toolbox utilizing piecewise linear and globally
continuous finite elements.

To find a rearrangement satisfying Lemma 3, the integration is approximated by
the quadrature rule∫

�

m(k−1)(x)(ϕ(k−1)(x))2 dx ≈
∑
i∈I

wim
(k−1)
i (ϕ̄

(k−1)
i )2,

where ϕ̄i represents ϕ evaluated at a barycenter point of an element. In order to reduce
effects due to heterogeneous meshes, we use a uniform mesh [17]. In this case, wi

is the area of each triangle. In view of Lemma 3, given the current set of values
{m(k−1)

i }i we look for a rearrangement {m(k)
i }i satisfying∑

i∈I
m

(k)
i (ϕ̄

(k−1)
i )2 ≥

∑
i∈I

m
(k−1)
i (ϕ̄

(k−1)
i )2.

The discrete rearrangement inequality [27] states that

xny1 + · · · + x1yn ≤ xσ(1)y1 + · · · + xσ(n)yn ≤ x1y1 + · · · + xnyn (81)

for every choice of real numbers x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ yn and every permutation
xσ(1), . . . , xσ(n) of x1, . . . , xn. Thus, if we sort both (ϕ̄

(k−1)
i )2 and m

(k−1)
i in ascending

order, m
(k)
i can be generated by rearranging m

(k−1)
i using (81). In our case, m

(k)
i is

either −1 or κ .

7.2 Numerical Tests

In this section we denote �+ := {x ∈ � : m(x) > 0}. We start with simulations in one
dimension and consider � := (0,1). In Fig. 1, we first demonstrate how the principal
eigenvalue λ varies with respect to a and β for �+ = [a, b], where b − a = c. The
parameters are κ = 1, c = 0.2. a = 0.01p with 0 ≤ p ≤ 80, p ∈ N, and β = 20.1q

where 0 ≤ q ≤ 100, q ∈ N. We observe that λ is an increasing function of β for any
fixed c. We verify the existence of the threshold β∗ obtained in Theorem 2 such that
λ achieves its minimum for a = (1 − c)/2 when β > β∗ and for a = 0 or 1 − c when
β < β∗.

In Figs. 2 and 3, we show one-dimensional simulations for β = 10 and β = 1,
respectively. The initial condition is chosen as a piecewise constant function

m(x) =
5∑

i=1

(1 + κ)H(|x − xi | − 0.03) − 1,
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Fig. 1 Eigenvalue λ versus a

and β in dimension one. The
first eigenvalue λ achieves its
minimum at a = 0.4 for β > β+
and at a = 0 or a = 0.8 for
β < β∗

Fig. 2 The evolution of m and its corresponding first eigenfunction for β = 10
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Fig. 3 The evolution of m and its corresponding first eigenfunction for β = 1

where H is the Heasiviside function, xi = 0.1 + 0.2 · (i − 1) for Fig. 2 and xi =
0.08 + 0.2 · (i − 1) for Fig. 3. In these two cases we have

μ = −|�|−1
∫

�

m(x)dx = 0.4, c = 1 − μ

1 + κ
= 0.6

2
= 0.3,

β∗ = π

2c
≈ 3.14

2 · 0.3
= 5.233.

Thus we expect the optimal arrangement for �+ to be at the center of � for β = 10 >

β∗ and at the one end of � = (0,1) for β = 1 < β∗.
In Fig. 2, we also observe a merging behaviour during the optimization process.

The optimal arrangement of �+ is at the center, i.e. �+ = (0.35,0.65), where the
minimal eigenvalue λ1 = 24.0991 is achieved.

In Fig. 3, we depict a situation where the domain �+ undergoes topological
changes during the optimization process. The domain �+ starts to merge into two
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Fig. 4 Mixed Robin-Neumann conditions with β = 0.1: the initial configuration is m(x,y) = 1 for
{(x, y)|x < 0.4 + 0.15 sin(4πy)} and m(x,y) = −1 otherwise. The configurations of m(x,y) at iterations
0, 1, 2, and 47 and the corresponding principal eigenvalue at different iterations

pieces from initially five pieces and then it becomes a simply connected compo-
nent �+ = [0,0.3] at the second iteration which is the optimal arrangement with
λ = 11.3293. In these two examples, the optimization process is extremely fast in
the sense that the optimal arrangements are achieved in just three iterations. These
numerical results in one dimension strongly indicate that the optimum corresponds
to a simply connected component.

In Figs. 4–13, we consider test runs in two dimensions where � is a square. Al-
though this does not coincide with our assumptions that � has to be smooth, one may
actually prove that the existence results in Sect. 1 remain true if � is a convex polyg-
onal domain, according to the solution theory of elliptic equations in non-smooth
domains; see [14] for instance. Note that this is no longer true if � has reentrant
corners.

The computational domain [0,1] × [0,1] is first triangulated into four triangles
by connecting the four vertices with the point (0.5,0.5) and then further refined 8
times by dividing each triangles into four triangles. The total number of triangles is
49 = 262144. We use linear element and the eigenvalues have second order accuracy.
The algorithm is terminated when the (n − 1)-st and n-th iterations yield precisely
the same configuration m, respectively.

In Fig. 4–10, we consider mixed Robin-Neumann conditions for cylindrical do-
mains as in Sects. 3–6, i.e. we have Neumann conditions on the top and bottom
boundaries and Robin conditions on the side.

The initial configuration is m(x,y) = 1 for {(x, y)|x < 0.4 + 0.15 sin(4πy)} and
m(x,y) = −1 otherwise for Figs. 4–6. The configurations of m(x,y) at iteration 0, 1,
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Fig. 5 Mixed Robin-Neumann conditions with β = 1: the initial configuration is m(x,y) = 1 for
{(x, y)|x < 0.4 + 0.15 sin(4πy)} and m(x,y) = −1 otherwise. The configurations of m(x,y) at iterations
0, 1, 30, and 70 and the corresponding principal eigenvalue at different iterations

2, and 47 and the corresponding principal eigenvalue at different iterations are shown
in Fig. 4 for β = 0.1. We found that the optimal shape for �+ becomes a strip parallel
to the boundary with Robin boundary conditions. The eigenvalue λ1 decreases very
fast in the first few iterations, see the last figure in Fig. 4. The algorithm stops only
when no furthermore improvement of m(x,y) can be made, which takes 46 iterations
in total. However, the deviation of the eigenvalue at iteration 6, i.e. λ6

1, is already less

than 0.005 from the optimal numerical eigenvalue λ
(46)
1 = 3.4488.

In Figs. 5–6, we keep the initial condition unchanged but β is increased to 1 and
10, respectively. The optimal shape for �+ with β = 1 is no longer a strip with
straight boundaries, rather, it becomes a curved strip at iteration 70, as shown in
Fig. 5. When β = 10, then the optimal shape for �+ becomes a half-circle like shape
attached to one of the two boundary edges with Neumann condition as shown in
Fig. 6.

In Figs. 7–9, the initial configuration is m(x,y) = 1 for {(x, y)|x < 0.25 +
0.15 sin(4πy)} and m(x,y) = −1 otherwise. The area of �+ is smaller than in
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Fig. 6 Mixed Robin-Neumann conditions with β = 10: the initial configuration is m(x,y) = 1 for
{(x, y)|x < 0.4 + 0.15 sin(4πy)} and m(x,y) = −1 otherwise. The configurations of m(x,y) at iterations
0, 1, 3, and 21 and the corresponding principal eigenvalue at different iterations

Fig. 7 Mixed Robin-Neumann conditions with β = 0.1: the initial configuration is m(x,y) = 1 for
{(x, y)|x < 0.25 + 0.15 sin(4πy)} and m(x,y) = −1 otherwise. The configurations of m(x,y) at itera-
tions 0, 1, 3, and 23 and the corresponding principal eigenvalue at different iterations
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Fig. 8 Mixed Robin-Neumann conditions with β = 1: the initial configuration is m(x,y) = 1 for
{(x, y)|x < 0.25 + 0.15 sin(4πy)} and m(x,y) = −1 otherwise. The configurations of m(x,y) at itera-
tions 0, 1, 2, and 26 and the corresponding principal eigenvalue at different iterations

Fig. 9 Mixed Robin-Neumann conditions with β = 10: the initial configuration is m(x,y) = 1 for
{(x, y)|x < 0.25 + 0.15 sin(4πy)} and m(x,y) = −1 otherwise. The configurations of m(x,y) at itera-
tions 0, 1, 2, and 41 and the corresponding principal eigenvalue at different iterations
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Fig. 10 Mixed Robin-Neumann conditions with β = 0.1: the initial configurations are (a1)
m(x,y) = 1 for {(x, y)|x < 0.4 + 0.15 sin(4πy)} and m(x,y) = −1 otherwise, (b1) m(x,y) = 1
for {(x, y)|x < 0.4 + 0.3 sin(4πy)} and m(x,y) = −1 otherwise, (c1) m(x,y) = 1 for
{(x, y)|x > 0.6 + 0.3 sin(4πy)} and m(x,y) = −1 otherwise, and (d1) m(x,y) = 1 for
{(x, y)|x < 0.5, y > 0.2} and m(x,y) = −1 otherwise. The configurations of optimal m(x,y) are
shown in (a2), (b2), (c2), and (d2)

the previous three examples. Notice that the optimal shape becomes a quarter of a
circular-like shape at one of the corner for both β = 0.1 and β = 1 in Figs. 7–8. For
β = 10, the optimal shape is a half-circle like shape as shown in Fig. 9. This result is
very similar to the one shown in Fig. 6.

In general we observe that the final result is independent of the initial guess, up
to the non-uniqueness of the solutions of (6). Indeed, the minimization problem (6)
may have several global minima in general, due to possible symmetries of the domain
� and of the boundary conditions. If this is the case as in our examples, the initial
guess determines which of these global optima will be selected. This is illustrated
in Fig. 10(a1), (a2), (a3) and (a4), where four different initial conditions are chosen.
The final optimal configurations of m are shown in (b1), (b2), (b3) and (b4), respec-
tively. The white strip can either be attached to the left or to the right boundary due
to the symmetry of the square and to the mixed Robin-Neumann conditions. Both
configurations yield the same minimal first eigenvalue.

In Figs. 11–13, we show test runs with Robin conditions on all boundaries
for different β-values. The initial condition is again m(x,y) = 1 for {(x, y)|x <

0.4 + 0.15 sin(4πy)} and m(x,y) = −1 otherwise. The optimal shape for �+ is a
curved strip for β = 0.1 (see Fig. 11), a quarter of a circular-like shape at a corner
for β = 1 (see Fig. 12) and a circular shape in the center for β = 10 (see Fig. 13),
respectively. This behavior is similar to the one-dimensional case, i.e. when β > β∗
and the optimal shape for �+ rests at the center of the domain.
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Fig. 11 Robin boundary condition with β = 0.1: the initial configuration is m(x,y) = 1 for
{(x, y)|x < 0.4 + 0.15 sin(4πy)} and m(x,y) = −1 otherwise. The configurations of m(x,y) at iterations
0, 1, 2, and 34 and the corresponding principal eigenvalue at different iterations

Fig. 12 Robin boundary condition with β = 1: the initial configuration is m(x,y) = 1 for
{(x, y)|x < 0.4 + 0.15 sin(4πy)} and m(x,y) = −1 otherwise. The configurations of m(x,y) at iterations
0, 2, 40, and 72 and the corresponding principal eigenvalue at different iterations
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Fig. 13 Robin boundary condition with β = 10: the initial configuration is m(x,y) = 1 for
{(x, y)|x < 0.4 + 0.15 sin(4πy)} and m(x,y) = −1 otherwise. The configurations of m(x,y) at iterations
0, 2, 4, and 66 and the corresponding principal eigenvalue at different iterations

These test runs indicate that the optimal domain for �+ is most likely simply con-
nected. When the area of �+ is large enough and β is sufficiently small, then a strip
parallel to the boundary with Robin boundary conditions is the optimal configura-
tion. Otherwise, for small area |�+|, the optimal shape for �+ becomes a quarter
of a circular-like shape, a half-circular like shape or a curved strip attached to the
boundary when β is small. When β is large, then the optimal shape for �+ becomes
a circular-like shape at the center of the domain.

8 Conclusion

In one dimension, we have shown the existence of a threshold value β∗ such that the
minimum of the principal eigenvalue, among simply connected sets E, is attained
when E is on the boundary for β < β∗, as in the Neumann case, and when E is in the
center for β > β∗, as in the Dirichlet case. The case β = β∗ is a perfect equilibrium
and every set E with one connected component is optimal. The question of optimal-
ity for a general set E is still open: numerical results indicate that the eigenvalue is
always higher for E with several connected components. This is due to the oscilla-
tions of the corresponding eigenfunction. Therefore, we conjecture that the minimal
eigenvalue is obtained for E with only one connected component.

In higher dimensions, we expect in general the existence of a similar threshold
value β∗. The case of Robin boundary conditions on all of the boundary is difficult to
study, since we cannot use any separation of variables to simplify the problem, even
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with simple geometries such as cylindrical domains. In this paper we have considered
mixed Robin-Neumann conditions and we have shown that such a threshold β∗ also
exists for cylindrical domains. In the favorable case we have shown, that a “strip”
touching the boundary of the cylinder is locally optimal. Unlike in dimension one,
additional conditions for the optimality of the strip come into play. In particular, these
conditions depend on the shape and the length of the cylinder.

For multi-dimensional domains and Robin boundary conditions on all of the
boundary the optimal set E changes continuously with β . Therefore an interesting
task is to find β∗ such that the optimal E does not touch the boundary for β > β∗.
Other interesting questions are the study of the case β < 0 and the dependence of μc

on β .
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